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The crossover behavior of various models exhibiting phase transition to absorbing phase with parity con-
serving class has been investigated by numerical simulations and cluster mean-field method. In case of models
exhibiting Z2 symmetric absorbing phases (the cellular automaton version of the nonequilibrium kinetic Ising
model �NEKIMCA� and a stochastic cellular automaton invented by Grassberger, Krause, and von der Twer �J.
Phys. A 17, L105 �1984��) the introduction of an external symmetry breaking field causes a crossover to kink
parity conserving models characterized by dynamical scaling of the directed percolation �DP� and the crossover
exponent: 1 /��0.53�2�. In the case of a branching and annihilating random walk model with an even number
of offspring �dual to NEKIMCA� the introduction of spontaneous particle decay destroys the parity conserva-
tion and results in a crossover to the DP class characterized by the crossover exponent: 1 /��0.205�5�. The
two different kinds of crossover operators cannot be mapped onto each other and the resulting models show a
diversity within the DP universality class in one dimension. These subclasses differ in cluster scaling
exponents.
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I. INTRODUCTION

The study of nonequilibrium phase transitions is an im-
portant task of statistical physics. Genuinely nonequilibrium
transitions can be observed most easily in models exhibiting
transition from an active to an “absorbing” state, where the
fluctuations are negligible, hence no return is possible. The
exploration of critical phenomena and universality classes of
simple, one component models has been started �1–4� and
important steps towards a full classification have been done
�5,6�.

For a long time it was a common belief that all continu-
ous, nonequilibrium phase transitions belong to class of the
directed percolation �DP� and a hypothesis advanced by Jan-
ssen and Grassberger �7–9�. This states that in one compo-
nent systems exhibiting continuous phase transitions to a
single absorbing state �without extra symmetry and inhomo-
geneity or disorder� short-ranged interactions can generate
DP class transition only. Despite the robustness of this class
experimental observation is rare, owing to the high sensitiv-
ity to disorder and long-range interactions. A very recent
experimental study �10� has reported clear and comprehen-
sive experimental evidence of DP criticality. Later it was
discovered that in systems with infinitely many frozen ab-
sorbing states �IM type� �11–14� like in the pair contact pro-
cess �PCP� the static exponents coincide with those of the
DP. The dynamical cluster spreading behavior is different
owing to the long time memory generated by the frozen
monomers �15�. In the literature the transition type of PCP is
often called DP type. Very recently �16� have investigated in
1+1 dimension the crossover from PCP to DP type of mod-
els by introducing different absorbing state reduction mecha-
nisms and nontrivial exponents have been found. This find-
ing confirms that strictly speaking the universality class of
PCP and DP is different.

The first example for clearly non-DP critical behavior was
found among stochastic cellular automata �SCA� by Grass-
berger �17�. These models exhibit Z2 symmetric absorbing
states and an effective kink dynamics, which follows an

even-offspringed branching and annihilating random walk
�BARWe�. In reaction-diffusion �RD� particle models, with
BARWe dynamics �A→3A, 2A→�� such phase transition
class was discovered by �18,19�. Since this is different from
odd-offspringed branching and annihilating random walks, in
which DP class transition occurs, the name “parity conserv-
ing” �PC� was introduced to denote this class.1

An important example of the PC class behavior was dis-
covered in one-dimensional kinetic Ising models with com-
bined zero temperature spin-flip and finite temperature spin-
exchange dynamics �NEKIM� �20�. Here the domain walls
between up and down spins follow BARWe dynamics and an
exact duality transformation in one dimension between the
NEKIM and the BARWe particle model was established by
�21�.2 Naturally the NEKIM exhibits two, Z2 symmetric ab-
sorbing states. This universality class has not been observed
in nature yet, however we pointed out �22� that this model is
very insensitive to the quenched disorder, therefore it is a
good candidate for experimental verification. The inactive
phase of NEKIM, where annihilating random walk domi-
nates has been observed �23� unless very strong disorder
fractures the medium.

The introduction of a symmetry breaking external mag-
netic field, in NEKIM, which favors one of the absorbing
states �but preserves the BARWe dynamics� was shown to
change the type of transition from PC to DP type �24�. Such
crossover mechanism has been observed in other Z2 symmet-
ric models as well �25–29�. On the other hand simulations
�30� and field theory �31,32� proved that a PC breaking
A→� reaction in the BARWe model should also change the
type of phase transition from PC to DP type.

The more detailed study of crossover behavior among
nonequilibrium universality classes has been intensified in

1However, other different names for this class such as “directed
Ising” �DI� or “generalized voter �GV�” or “BARW” can also be
found in the literature

2Note that such mapping is not possible in higher dimensions, but
since the upper critical dimension is dc=4 /3 it is not important.
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the recent years. The universal crossover exponent, defined
by the shape of phase boundary �rc�w�� as one introduces a
relevant scaling field �w� �see for example �33��,

rc�w� � w1/�, �1�

has been determined in case of DP to the compact DP class
�34–37�. Crossover between DP and isotropic percolation
was investigated by field theory �38–40� and simulations
�41�. Very recently the numerical exploration of the cross-
over behavior from the diffusive pair contact process �PCPD�
to DP �42� has strengthened the existence of the independent
PCPD class theory. In IM type models “nontrivial crossovers
to DP class” have been found �16�. The crossover behavior
from DP to mean-field, generated by long-range diffusion,
following the early studies �43,44�, has currently been reex-
amined via numerical techniques �45� and field theory �46�
and estimates for the exponent � have been provided. Simi-
lar, diffusion driven crossover in case of PC class was deter-
mined within the framework of NEKIM �47� long ago.

In the present paper we determine the crossover exponent
from PC to DP class in a SCA version of the NEKIM model
�24� �NEKIMCA� and compare it with other realizations of
the PC class. In particular we confirm the universality of � in
case of Z2 symmetry breaking fields by simulating Grass-
berger’s A model. We compare this crossover behavior with
the outcome of parity conservation breaking in a BARWe
model.

II. CROSSOVER OF NEKIMCA IN AN EXTERNAL FIELD

The NEKIM exhibiting PC class transition was suggested
by �20� as a generalization of the Glauber Ising model �48�.
It is defined by the alternating application of a T=0 spin-flip
sweep and a T�0 Kawasaki spin-exchange update of a one-
dimensional lattice. While the spin-flip dynamics generates
annihilating random walk of kinks, the spin-exchange intro-
duces a parity conserving branching �A→3� of the domain
walls. Tuning the relative strengths of the reactions one can
get a phase transition from an active to a kink free, adsorbing
state �the order parameter is the density of kinks�.

It was realized in �24� that branching reactions appear
automatically in the SCA version of the NEKIM, if the spin-
flip update is done synchronously due to overlaps. With this
dynamics we can obtain a very simple model, with PC type
of critically, which can be implemented on a computer by
efficient bit coding. The NEKIMCA spin updates, repre-
sented by bit field operations of a computer word, generating
BARWe reactions of the kinks are the following.

Random walk of domain walls �•�:

↑ ↑ • ↓ →
wi

↑ • ↓ ↓
generated by a spin-flip between oppositely oriented spins,
with probability wi.

Annihilation of a pair of kinks:

↑ • ↓ • ↑ →
wo

↑ ↑ ↑
generated by a spin-flip between a pair of same oriented
spins, with probability wo.

Branching of a kink:

↑ ↑ • ↓ ↓ →
wi

2

↑ • ↓ • ↑ • ↓
can be generated by two overlapping spin-flips �with the
probability wi

2� such that it causes a spin-exchange.
There are two independent parameters related to the origi-

nal parametrization of Glauber,

wi = ��1 − �̃�/2, �2�

wo = ��1 + �̃� . �3�

In the present study we investigated the �=0.35 and �=2
cases. The corresponding PC critical points, without external

field, are located at �̃c=−0.535 and �̃c=−0.416, respectively.
A single Monte Carlo step �MCS� consists of updating all

sites at once as described in �49� �throughout the paper the
time is measured by MCS�. The simulations were reformed
on L=40000 sized lattices, with periodic boundary condi-
tions up to tmax=106 MCS. The change of critical point �c�h�
has been determined for several values of external field. The
transition probabilities are modified in the presence of an
external magnetic field H as

wi
h = wi�1 − hsi� , �4�

wo
h = wo�1 − hsi� , �5�

h = th� H

kT
� . �6�

Figure 1 shows the phase diagram in the �h , �̃� plane, which
is similar to the one we obtained in �24� by simulations and
cluster mean-field technique. We have applied only random
initial state simulations to find the points of the line of phase
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FIG. 1. �Color online� Critical point shift in the NEKIMCA
model as a result of the external h field for �=2. The solid line is
power-law fitting on the numerical data points. The inset shows the

scaling of the shift of �̃ for �=2 �bullets� and for �=0.35 �stars� on
a log-log scale.
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transition exhibiting kink density decay exponent �
=0.1595 of the DP �3�. A clear power-law scaling of the

critical point shift ��̃ as the function of h can be fitted with
the form �1� in the region 0�h�0.01 with 1 /�=0.52�3�
crossover exponent. The error bars on Fig. 1 come from our
numerical estimates for the critical point shifts and the least
squares error estimate fitting procedure. This value is close to
the early numerical estimates: �=2.1�1� by �26� and �
=2.24�10� by �29�.

III. CROSSOVER OF THE GRASSBERGER-A SCA
MODEL

The PC conserving SCA by Grassberger is realized by the
following range-1 update rule �we show the configurations at
t−1 and the probability p of getting “1” at time t�:

t−1: 100 001 101 110 011 111 000 010
t: 1 1 0 1−p 1−p 0 0 1

The time evolution pattern in 1+1 dimension, for small p
evolves towards a stripelike ordered steady state �with
double degeneration�, while for p� pc=0.1245�5� the kinks
�the “00” and “11” pairs� survive. According to the classifi-
cation of Wolfram �50� for p=0 we have the Rule-94, class 1
CA, while the p=1 limit is the chaotic Rule-22 deterministic
CA. This model has been investigated from damage spread-
ing point of view by the present authors �51�.

Now we extend this model in such a way that a Z2 sym-
metry breaking occurs in the absorbing state. This can be
achieved by favoring one of the absorbing phases
�“1010101” or “0101010”� shifted by a single site. Therefore
we modified the transition rates

t−1: 100 001 101 110 011 111 000 010
t: 1 1 0 1−p� 1−p� 0 0 1

such that p�= p+w at odd and p�= p−w at even sites. The
simulations were run on L=105 sized rings up to tmax=106

MCS. The location of the critical point p�w� is shown on Fig.
2. To get more precise estimates for the crossover exponent
we determined the local slopes of the data points,

1/�eff�wi� =
ln rc�wi� − ln rc�wi−1�

ln�wi� − ln�wi−1�
. �7�

This is plotted in the inset of Fig. 2 and in the w→0 limit
one can read-off the 1 /�=0.53�2� linear extrapolation value
�with least squares error estimates� in agreement with the
value for NEKIMCA+h. As the figure shows the correction
to scaling cannot be neglected.

IV. CROSSOVER IN A BARWE MODEL

To study the PC to DP crossover in another way we take
a simple version of a BARWe particle model introduced in
�52� and generalized in �53� �ZAMb model� to allow phase
transition at finite branching rate. This model is defined on
the one-dimensional lattice as follows. An occupied site is

chosen randomly and is tried for diffusion, with probability
D, or branching with probability �=1−D; while the time is
increased by 1 /N, where N is the number of occupied �ac-
tive� sites. In a diffusion step the particle jumps to its ran-
domly chosen nearest-neighbor sites. If the site is occupied
both particles are annihilated with probability r. On the other
hand, the jump is rejected with probability 1−r. The branch-
ing process involves the creation of two new particles around
the neighborhood. If either, or both neighboring sites is pre-
viously occupied the target site�s� become empty with prob-
ability r. Otherwise, the lattice remains unaltered with prob-
ability 1−r.

To induce a crossover to DP we introduced a spontaneous
particle removal A→� or a coagulation AA→A with a
small probability w to the above reactions. The simulations
were done on lattices of size L=105 with periodic boundary
conditions for diffusion rate D=0.2 �the convergence of
GMF approximations was found to be rather good for this
diffusion rate in �53��. For w=0 we used the critical point
value determined in �53�: rc=0.562�1�. As we increase w the
critical point rc�D� shifts as shown in Fig. 3. A simple power-
law fitting for the data in the range w� �0,0.1� of the form 1
resulted in �rc=0.189w0.181. A more precise estimate, which
takes the corrections to scaling into account can be obtained
by calculating the local slopes �7�. By plotting the effective
exponent as the function of w a linear extrapolation resulted
in 1 /�=0.205�5� both for the AA→A and the A→� parity
breaking reactions.3

V. GMF+CAM CALCULATIONS

The simulation results were complemented by analytical
cluster mean-field approximations and coherent anomaly ex-

3Note that the sign of correction to scaling is different for the two
crossover versions.
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FIG. 2. �Color online� Critical point shift of the Grassberger’s-A
SCA model to DP �bullets�. The lines show power-law-type fitting
on the numerical data. The inset shows the local slopes of the cross-
over exponent defined as �7�.
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trapolations. The generalized �cluster� mean-field method
�GMF� suggested for SCA by �54� and for dynamical RD
models by �55� has been shown to be a successful approach
for exploring the phase diagram of nonequilibrium models
�see, for example, �56,57� and the references in �3��. It’s
extension with the coherent anomaly �CAM� extrapolation
�58� enables one to extract the true scaling behavior.

In GMF we set up equations for the steady state of the
system based on N-point block probabilities. Correlations
with a range greater than N are neglected. By increasing N
from 1 �traditional mean-field� step by step we take into ac-
count more and more correlations and get better approxima-
tions. One can set up master equations for the PN block prob-
abilities as

�PN�	si
�
�t

= f„PN�	si
�… , �8�

where the site variables take the values si= � ,A. During the
solution of these equations one estimates larger than N sized
block probabilities by the maximum overlap approximation:

PN+1�s1, . . . ,sN+1� �
PN�s1, . . . ,sN�PN�s2, . . . ,sN+1�

PN�s2, . . . ,sN,�� + PN�s2, . . . ,sN,A�
.

�9�

Taking into account the spatial symmetries and the conser-
vation of probability for the maximal, N=9 approximation of
this work we had to find the solution of a set of nonlinear
equations of 272 independent variables.

The steady-state solutions of the N-cluster approximations
for the NEKIMCA �1	N	8� and the ZAMb model �1
	N	9� have been determined and the corresponding den-
sities are calculated numerically. The phase transition points
are obtained for several values of the crossover parameter in
both cases. In case of the ZAMb model �at D=0.2� they are
plotted in Fig. 4. As one can see for N=1 �site mean-field�

the critical point rc�N ,w� exhibits linear relation without cor-
rections to scaling. This also true for the ZAMB+sink case.
This means the 1 /�MF=1 mean-field value for both kinds of
crossover.

For N�1 the rc�N ,w� curves pick up w1/2 type of correc-
tions to scaling �the leading order singularity is expected to
remain mean-field like�. Assuming a scaling with the correc-
tion form

rc�N,w� = a�N�w + b�N�w1/2, �10�

which is natural if we swap the axes rc and w, one can
determine the amplitudes �a�N�� of the leading order term.
Following the envelope scaling hypothesis of �58� the coher-
ent anomaly method �CAM� extrapolation can be performed
on the amplitude data in the N→
 limit.

According to CAM the amplitudes a�N� of the cluster
mean-field singularities in the leading order scale as

�a�N�� � �rc�N� − rc�1/�−1/�MF �11�

allowing us to estimate the 1 /� exponent of the true singular
behavior �Eq. �1��. The a�N� amplitudes were determined by
a next leading order fitting form �10� on the rc�N ,w� data in
the neighborhood of rc�N ,0� for the ZAMb model. In case of
the NEKIMCA the same procedure has been applied for the

�̃c�N ,h� crossover critical point GMF results.
The highest a�N� amplitudes with a CAM fitting form

�which takes into account possible scaling corrections �56��

a�N� = c�c
x + d�c

x+1, �12�

where �c�N�= ��̃c− �̃c�N�� for NEKIMCA and �c�N�= �rc
−rc�N�� for the ZAMb are plotted on Fig. 5. In this form the
nonuniversal fitting parameters are c, d and the anomaly ex-
ponent is x=1 /�−1 /�MF. By the simulations �apart from the
constants c and d� we have an expected behavior for �12�
both for ZAMb and NEKIMCA. This is plotted on Fig. 5 by
the dashed lines. As one can see our GMF data can be fitted
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FIG. 3. �Color online� Critical point shift in the ZAMb model to
DP as the result of AA→A �bullets� and A→� �boxes� parity con-
servation breaking. Dashed lines are power-law-type fitting to nu-
merical data. The inset shows the corresponding effective exponents
defined as �7�.
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FIG. 4. �Color online� Critical point shift of the ZAMb model to
DP �bullets� obtained by the GMF method for various cluster sizes
�N=1,2 , . . . ,9 top to bottom�.
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with those lines �with the values c=2, d=4.6 for ZAMb and
c=0.21, d=0 for NEKIMCA� but the amplitudes for N
�10 just start to converge towards the asymptotic scaling
curves. This suggests that larger N-cluster approximations
should be determined. However, the numerical instability of
root finding of the GMF method �within the space of more
than 500 variable, nonlinear system� prevented us to go fur-
ther. Still the different behavior for NEKIMCA and ZAMb
can be justified by this figure.

VI. CONCLUSIONS AND DISCUSSION

We have performed simulations and GMF+CAM ap-
proximations for various versions of the PC class model
crossovers towards the “DP class.” By determining the cross-
over exponents we have found and outstanding difference
between the effect of a symmetry breaking field �1 /�
=0.53�2�� and the parity conservation breaking �1 /�
=0.205�5��. Although the NEKIMCA and the BARWe are
dual models, the two types of crossover operators cannot be
mapped onto each other. Furthermore they cannot be mapped
onto a local one in the dual system. The A→� process in the
spin language would mean flipping of all spins from a given
site �see Fig. 6�. Such transformation cannot even be done in
finite systems with periodic boundary conditions.

A Z2 symmetry breaking in the BARWe model favors the
“�” �up� or “
” �down� oriented spins depending on its
sign. In the case of a “�” preference �see Fig. 6� this means
that “�” domains broaden on the expense of “
” domains,
hence odd-even kinks �the corresponding particle pairs in
BARWe� attract and even-odd pairs repel each other �shown
by the horizontal arrows�. Therefore, that particle model be-
comes an effectively two-component, parity conserving one,
and the sufficient conditions of the DP hypothesis do not
hold. Still one can see a DP type of decay in the global order
parameter because calling a “�” domain a macroscopic par-

ticle “X,” an effective DP process X→�, X→2X, 2X→X
describes it’s dynamics.

However, there are certain operators which do not exhibit
DP type behavior. For example, in case of cluster spreading
it is easy to see that there are two sectors in this model. An
odd parity one, with ��=0 final survival probability defined
as

P
 � �p − pc��� �13�

and an even parity one, with normal, ��=� DP exponent. As
a consequence the hyperscaling relation connecting the clus-
ter spreading exponents and the rapidity reversal symmetry
of DP is not satisfied for this critical behavior. The univer-
sality class of the DP is split into subclasses. The subclass of
models with BARWe dynamics with broken Z2 symmetry
�let us call it DP-2� is different from that of the ordinary �1
+1�-dimensional DP. Since the difference is manifested in
the cluster spreading behavior, which is a consequence of a
special initial condition, similarly to the terminology used in
equilibrium models with different surface classes we do not
claim the splitting of the DP class itself.

This subclass behavior is similar to the one, which is ob-
served in the pair contact process, where the frozen mono-
mers cause different cluster behavior from that of the simple
contact process. Also that kind of DP-2 behavior should
arise, when one introduces spin-anisotropy in the NEKIM
�59,60� and the effective two-component BARWe model ex-
hibits DP type of phase transition for finite branching rate in
the global order parameter, but different scaling behavior oc-
curs in terms the cluster spreading. Furthermore this model
exhibits a reentrant phase diagram and at zero branching rate
one finds another phase transition belonging to the two-
component BARWe model �31�, but the cluster spreading
behavior, which is sensitive to the spin anisotropy is different
again. Therefore such subclasses are not at all rare among
low-dimensional reaction-diffusion models.

We would like to point out that by using an alternative
definition for universality classes a different interpretation
can also be given for the same numerical results presented
here. Some authors define a university class by the field-
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FIG. 6. �Color online� Schematic mapping of the two different
kinds of crossovers between the kink and the spin model. The top
graph shows that the removal of a single kink corresponds to flip-
ping of all spins to the right from position X. The bottom graph
demonstrates that an external magnetic field in the spin model
causes repulsion-attraction force is among domain walls �horizontal
arrows� and an effectively two-component reaction-diffusion sys-
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theoretic action of the model �without specifying the fixed
point� instead of the models exhibiting the same set of
known critical exponents as we do. Since the action of
BARWe particles �31� and the action of the NEKIM spin
model �32� �called GV model� do not agree, they should
belong to different universality classes, which “intersect” in
one dimension only �2�. According to this picture the applied
symmetry breaking to the PC and GV class models �Z2
breaking in GV and particle removal in BARWe� should end
up in DP class somehow.

However we think that our definition of universality class,
and therefore our interpretation, is more precise. It can de-
scribe the critical behavior of �particle� system for which no
proper field theoretical action has been found. Even within a
field theory multiple fixed point solutions �corresponding to
multiple critical points� can exist and the relevancy of terms
affecting the stability of a fixed point is not clear in many
cases.

Furthermore a coarse-grained field theory may not capture
all scaling details of a particle model. In a discrete particle
model diffusive annihilating particles can die out within fi-
nite time �even in an infinite sized system� due to the recur-
rence relation of random walks in one dimension.4 The par-
ticle survival probability decays asymptotically as Ps�t�
� t−� and the final survival probability scales as �13�. As a

consequence a thermodynamic limit, in which the particle
density is kept finite cannot be established.

On the other hand, in field theories of continuous vari-
ables the survival probability is always unity and it had been
unclear if the exponent � and �� could be defined sensibly.
To overcome this discrepancy a reinterpretation of survival
probability was proposed in �61�. This alternative definition
of � in field theory resulted in correct scaling exponents and
hyper scaling relations corresponding to symmetries.

Since in our case the “thermodynamic limit” can not be
restricted to infinite particle number the cluster spreading
behavior starting from finite number of particles is relevant
from the universality point of view as in many papers inves-
tigating absorbing phase transition via this approach �see
�1–4,11,12,62�. The cluster spreading behavior �the finite
survival probability, pair-connectedness functions, avalanche
distributions, etc.� are sensitive to the initial parity of par-
ticles, hence strictly speaking the DP-2 subclass is not iden-
tical to the DP class in 1+1 dimension.
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